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ABSTRACT
Since 1995 we have been developing a decision-
support model, called Q-ID, which uses a series of
infectious disease knowledge bases to make
recommendations for empirical treatment or to check
the appropriateness of current antibiotic therapy.
From disease manifestations and risk factors, a
dif/erential diagnosisfor the patient is generated by a
diagnostic medical expert system. The resulting
probability of each disease is multiplied by the
expected benefit in improved mortality and morbidity
from optimal antibiotic treatment ofeach disease. To
generate empirical treatment recommendations, site-
specific data on sensitivity to antibiotics of each
organism is used as an estimate of the likelihood of
achieving maximum benefit for each disease on the
patient's differential. Combining this data with drug
and patient specific factors, the model recommends
the antibiotic(s) most likely to produce the optimal
benefit in this patient with the least risk and expense.
In this paper the model is described, excerpts from
each of the knowledge bases are presented, and
performance ofthe model in a real case is shownfor
illustration.

INTRODUCTION
Current literature contains evidence that computer
programs have proved to be effective in reducing
hospital acquired infections by assisting physicians in
selecting the best antibiotics for patients with
suspected or confinned infections [1-4]. Evans, et.al,
demonstrated that some nosocomial infections are
preventable or minimized with appropriate empiric
antibiotic treatment using a computer-based
antibiotic assistant program. The proven utility and
the need for a modular and portable system led to our
research and development in this area. Our work is
focused on the empiric phase of antibiotic treatment
which starts when the physician first detects evidence
of infection but pathogens are still unknown.
Infectious disease specialists spend as much as 50%
of their time doing empiric consults to help minimize
antibiotic misuse [5].

The antibiotic of choice for the treatment of an
infection is a multifactorial process which includes
site of infection, intrinsic activity of the drug, activity
of the drug at the site of infection, toxicity, and cost
as in the "Evans" model[2]. However, early
treatment choices are also complicated by incomplete
diagnostic information and expert knowledge about
morbidity and mortality risk for treated versus
untreated patients. For example, empiric therapy
may include an antimicrobial that treats a less likely
but life threatening disease process until further data
"rules out" the diagnosis. In this paper, we describe
the development and on-going evaluation of decision
support software and knowledge bases designed to
assist with the empiric antibiotic choices made by
physicians.

MODEL DESIGN
Perhaps the central challenge in the clinical care of a
sick patient is the ability to recognize when it is
appropriate to intervene and what kind of
intervention will improve the quality of life for that
patient. The object of the decision support system
discussed in this paper is to help the health care
provider recognize opportunities for appropriate
intervention, defined as a circumstance where
intervening in the natural course of events underway
in a particular patient would result in more good days
of life for that patient. Recognition of an
intervention opportunity must be based on several
types of knowledge as well as accurate and timely
observations of the patient.

Knowledge Bases used by the Model:
1. relation of data such as symptoms, physical

findings, risk factors and test results, to disease
manifestations (probability of each disease
explaining this patient's clinical profile),

2. expected course of disease in terms of mortality
and morbidity (MM) if untreated,

3. expected course of disease in terms of MM if
treated with optimal intervention,
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4. the fraction of patients with each disease
expected to respond to each intervention under
consideration,

5. cost of each intervention.

Our working antibiotic decision support model,
called Q-ID, uses these knowledge bases in its
calculations. Q-ID first takes into account the
likelihood that the patient is infected with a particular
organism. Using the object libraries from a
diagnostic expert system, Iliad [6], the posterior
probabilities of diseases are calculated based on risk
factors such as patient's location and disease
manifestations at the time Q-ID is invoked. The
portion of the extensive Iliad knowledge base that Q-
ID uses consists of diagnoses for 150 infectious
diseases. The Iliad knowledge frames which are
associated with these diagnoses include many
intermediate decisions. A sample Iliad frame is
shown below:

The frame above uses information collected from
other nested diagnostic frames (shown as bolded and
underlined) such as the following Cystitis frame.
Other nested frames within the Cystitis frame define
risk factors, signs, symptoms, and lab findings of
UTI and so forth.

Findings used by Iliad are defined in Q-ID's
dictionary which currently consists of 2,043
dictionary terms - sufficient to support the clinical
decisions under consideration. These terms are
categorized as follows: 1,221 microbiology and
virology lab terms, 213 history terms, 162 disease
names, 117 general chemistry terms, 83 physical
exam terms, 70 hematology terms, 31 radiology
terms, and a few other assorted terms.

In our model, the potential benefit achievable by
optimal treatment of each disease is measured by the
expected difference in mortality (represented as a
probability of dying times the actuarial life
expectancy of the patient) and morbidity (of both
short-term and long-term sequelae) treated and
untreated. A table has been created that contains for
each disease the expected difference in morbidity and
mortality, expressed as the difference in good days of
life saved (GDS), attributable to optimal treatnent of
each disease. This table contains morbidity and
mortality (MM) data on approximately 150 infectious
diseases. The numbers used in this table are based
largely on expert opinion and data from the literature
when available. A sample of the data contained in
the MM table:

Morbidity & Mortality Table

Mortality
Mortality without
with Rx RxDisease

Acute
Morb.
with Rx

Acute
Morb.
without
Rx

Days of
Acute
Morb.
with Rx

Days of
Acute
Morb.
w/_ Rx

Long Term
Sequelae
with Rx

Long
Tern

Sequelae
w/out Rx

Days
morb
Long
Tenn

Morbidity
of Sequelae

Bacteremia; serratia
Bacteremia; shigella
Cellulitis; staph aureus

Cellulitis; group a streptococcus
Cystitis; candida
Cystitis; citrobacter
Cystitis; escherichia coli

0.2
0.2

0.001
0.009

0.00009
0.0001
0.0001

0.39
0.39
0.15
0.2

0.001
0.001
0.001

0.8 0.9 21 60
0.8 0.9 21 60
0.3 0.4 10 30
0.4 0.6 10 30

0.001

0.001

0.001

0.0015

0.0015
0.0015

3
3

3

14

14

14
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Title: Cystitis Category: UTI
a priori: 0.03 (inpatient population)

A. At risk for UTI .95 .80
B. Nonspecific acute bacterial infection:

signs & symptoms .25 .05
C. Signs & symptoms of septic shock .01 .005
D. Signs & symptoms ofUTI .90 .05
E. Lab findings ofUTI .85 .10
F. Pelvis, and back symptoms: flank pain .001 .01
G. Examination of the tunk/back and pelvis: .001 .01

tendemess to palpation at costovertebral
angle (CVA)

H. General appearance: patient looking acutely ill .0005 .01

Title: Cystitis; enteric gram negative Category: UTI
a priori: 0.005 (inpatient population)

A. Demographic: age is - years old Sensitivity 1-Spec.
>=0 .10 .10
>=-5 .01 .16
>=16 .60 .24
>=41 .05 .25
>=66 .25 .25

B. Demographic: Gender female .95 .50
C. Cystitis .99 .007
D. Urine positive enteric gram neg. org .99 .05
E. Urine gram stain pos. gram neg. bacilli .80 .10

0.01
0.01

0.001
0.01

0.0001
0.0008
0.0008

0.09
0.09
0.01
0.09

0.001
0.001
0.001

900
900
60
90
90
90
90

0.4
0.4
0.2
0.4

0.3
0.3
0.3



Organisms / Antibiotics
Urine

Hospital-wide
Enterobacter aerogenes

Enterobacter cloacae
Escherichia coli

Q-ID % Susceptibility Table

Amikacin
100
98
99

Ampicillin Cefuroxime
0 56
0 50
63 100

Ceftazidime Cefazolin Gentamicin
78 0 100
84 0 97
100 94 97

Once the optimal GDS has been calculated across all
likely diagnoses, the "site-specific" susceptibility
table is invoked. This table contains sensitivity of
each organism to antibiotics that will have optimal
effect on each disease or the fraction of the optimal
effect. The Q-ID susceptibility table consists of
percentages of susceptibility and resistance testing of
268 unique organisms against 95 antibiotics, a

portion of which is shown above in the Q-ID
Susceptibility Table. This data was obtained from
the University of Utah laboratory system and is
catalogued by culture type, hospital location, date
and organism isolated. Epidemiology rules sort the
culture results into likely "true positives" and same

episodes so that the susceptibility results are not
biased by multiple cultures during a single infectious
episode nor probable contaminant [7].

The percentages for each antibiotic are then
multiplied by the maximum GDS for each disease to
determine effectiveness of a given drug against the
most likely diseases. Q-ID then creates a list of
antibiotics, ordered by potential benefit in the
treatment of a patient suspected to have an infection
before culture results are available (it can also be
used after culture results are available). The potential
benefit of each antibiotic is measured by the
difference in expected morbidity and mortality
expressed as Good Days of life Saved (GDS) by each
antibiotic.

The expected gain measured in GDS from each
antibiotic for each likely disease identified by Iliad is
weighted by the probability of each disease and
summed across all diseases. The antibiotics that
cover the largest fraction of the potential gain will be
recommended to the physician. After the GDS has
been calculated, patient specific factors (allergies,
renal and hepatic function, height, weight), drug
specific factors (toxicity and cost), and disease
specific factors (route of administration, site/drug
penetration) are evaluated to determine the top

therapeutic choices. The following
illustrates how Q-ID works.

case scenario

CASE SCENARIO (Q-ID)
A 78 year old male patient was admitted to the
hospital 3 days ago after slipping on the ice and
breaking his hip. The hip was surgically repaired the
next day. He is now mildly disoriented andfound to
have a temperature of 100.5 °F, pulse of 104 bpm,
respiratory rate of 20 rpm, and blood pressure of
110/60 mmHg. An intravenous and Foley catheter
are in place.

The patient's laboratory results are as follows:
WBC: 9,000/ mm3 Hgb: 9.7 gm/dL, Hct: 28%, BUN:
32 mg/dL, Creatinine: 1.2, Urine Analysis: RBC:
294/HPF, Nitrate: Positive, WBC: 1 5/HPF.
Radiology results indicate: Femoral neck fracture,
Normal chest PA & LAT on Day 1; Decreased lung
volumes with possible atelectasis and no

infiltrate/signs of pneumonia seen on chest PA &
LAT x-rays on Day 3; and colonic ileus noted on an

abdominal series performed on Day 4.

Q-ID passes this patient information to Mosby's
Iliad[6] object library component to calculate a

diferential diagnosis.

Q-ID then detennines the local pattern of
antimicrobial susceptibility for the organism in the

differential diagnosis, for example, E. coli (1,700
isolates from 1,094 infectious episodes).
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Ofloxacin
98
93
99

Disease - Organism Probability
Urinary tract infection - E. coli .42
Urinary tract infection - K pneumonia .27
Bacteremia - E. coli .25
Urinary tract infection - P. mirabilis .15
Surgical site infection - S aureus .10
Surgical site infection - S. pyogenes .09
Pneumonia, nosocomial - E. cloacae .09
Pneumonia, nosocomial - E. coli .09
Bacteremia - S. aureus .08



Q-ID uses the mortality, morbidity and life
expectancy tables to calculate the GDS (Good Days
ofLife Saved) for each appropriate antibiotic. These
antimicrobials, ifpresent on hospital formulary, are

ranked by efficacy and then by toxicity and then by
cost. Potential GDS not covered by the leading
antimicrobial is then consideredfor a second agent.

Ceftazidime is therefore ranked #1 and will save 88%
of the potential GDS. A "Recommend" button will
allow physicians to narrow this list to just those
antibiotics that have equivalent GDS scores (have
scores within 15% oftop choice). Upon request, Q-
ID can then make patient-specific recommendations
based on allergies, renal and hepatic function, and
disease process. Ifthe physician selects an antibiotic
from the "recommended" list, a detailed dosing
recommendation is displayed. See below:

This patient was found to have a urinary tract
infection and bacteremia with E. coli. His attending
surgeon had started Cefazolin based on his anecdotal

experience. The E. coli isolated was similar to other
nosocomial E. coli isolates in this hospital and
turned out to be resistant to Cefazolin. Initial
coverage with recommended antibiotic would have
probably reduced this patients recovery time and
decreased his stay in the hospital.

Current Evaluation
The antibiotic adviser expert system, Q-ID, is now
undergoing a formative evaluation. We have begun
by selecting 50 charts from medical records of
patients who have had an infectious disease episode
during their hospital stay. The pertinent clinical
information (relevant to the infectious episode) is
gleaned from the paper chart by an expert abstractor
and entered into a database. Care is taken to preserve

the chronological sequence of events. Then each
patient case is opened in our Q-ID editing and testing
program. The system's diagnoses and
recommendation at each step along the hospital
course are compared to the diagnoses and
recommendation of the domain experts at the same

point. When modifications are required, changes are

made to the software, table content, or both until the
model behaves accurately and predictably. At the
point where the model stabilizes, we will "freeze" the
program and run it against another set of 50 patients
in an evaluative phase. Experts, separate from the
development team, will review abstracted cases and a

blinded comparison will be performed against Q-IDs
recommendation.

Once the model stabilizes and is validated, Q-ID will
be interfaced to an existing operational patient care

system at the University of Utah. We also plan
studies to determine how well Q-ID performs as

compared with various levels of physician expertise
(medical resident, general practitioner, infectious
disease expert).

DISCUSSION
Our group has attempted to add additional utility to
contemporary antibiotic assistant paradigms. By
using Iliad's diagnostic object library to suggest
working hypotheses at the onset of nosocomial
infections, we hope to narrow the plausible
diagnoses. In addition, we have introduced a new

knowledge source by using morbidity and mortality
estimates to introduce an "urgency" factor into the
decision process. Since there is some inherent
subjectivity contained in the estimates used in the
morbidity and mortality tables, we will be conducting
sensitivity testing on how the quality of the M&M
information affects the conclusions reached by Q-ID.
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E. Coli % susceptible of
Antimicrobial nosocomial isolates
Ceftazidime 100
Cefuroxime 100
Ofloxacin 99
Gentamicin 97
Cefazolin 94
TMIP/SMX 92
Ampicillin 63
Vancomycm 0

% ofmax Scaled
Antibiotic GDS GDS Toxicity Cost
Ceftazidime 3855 88% 2 $23.70
Ampicillin & 3224 74% 5 $3.51
Gentamicin
Cefuroxime 3200 73% 2 $22.32
Ofloxacin 2650 61% 2 $5.28
Cefazolin 2400 55% 2 $5.49
Gentanicin 2335 53% 2 $0.33
TIMP/SMX 2224 51% 5 $2.76
Vancomycm 525 12% 4 $12.80

Present infornation suggests a probable urinary tract
infection with the possibility ofbacteremia or wound
infection.
Recommend: Urine culture

Blood culture
Examination ofwound
Ceftazidime 1.0gm Q 8° IV



The various testing and validation efforts currently
underway will hopefully serve to measure the degree
to which these concepts add value to contemporary
antibiotic assistant paradigms.

In building Q-ID, we have incorporated the
flexibility that will enable the use of site-specific
knowledge upon which to calculate the likelihood of
diagnoses, organisms, and sensitivities to antibiotics.
This will become an important factor as this
technology moves from the University of Utah to
other institutions. For example, since antibiogram
data is specific to a given hospital, Q-ID tools can
incorporate years worth of local data when it is
available. Portability of Q-ID to other sites will also
be enhanced by our model that is formula based,
where recommendations are expressed in terms of
good days of life saved (GDS) for each antibiotic.
This minimizes the inherent complexity of
establishing and maintaining a convoluted rule-based
system.

With few exceptions, clinical decision support
systems have had limited positive impact on the daily
operation of clinical care. Because of this we believe
Q-ID must be seamlessly integrated into the
workflow of patient care. Once this is accomplished
we hope that Q-ID will assist the physician in making
decisions regarding appropriate intervention avoiding
unnecessary, potentially harmful, or sub-optimal
treatment with antibiotics.
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